Showing 1 - 10 of 118
We examine the evidence on excess stock return predictability in a Bayesian setting in which the investor faces uncertainty about both the existence and strength of predictability. When we apply our methods to the dividend-price ratio, we find that even investors who are quite skeptical about...
Persistent link: https://www.econbiz.de/10011209279
GARCH volatility models with fixed parameters are too restrictive for long time series due to breaks in the volatility process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC methods due to the path dependence problem. An unsolved...
Persistent link: https://www.econbiz.de/10011052313
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of...
Persistent link: https://www.econbiz.de/10010588322
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the...
Persistent link: https://www.econbiz.de/10011077611
We address the problem of estimating generalized linear models when some covariate values are missing but imputations are available to fill-in the missing values. This situation generates a bias-precision trade-off in the estimation of the model parameters. Extending the generalized...
Persistent link: https://www.econbiz.de/10011117415
We introduce a hierarchical Bayes approach to model conditional firm-level alphas as a function of firm characteristics. Our empirical framework is motivated by growing concerns in the literature regarding the reliability of inferences from portfolio-based methods. In our initial tests, we...
Persistent link: https://www.econbiz.de/10011209281
This paper develops a particle filtering algorithm to estimate dynamic equilibrium models with stochastic volatility using a likelihood-based approach. The algorithm, which exploits the structure and profusion of shocks in stochastic volatility models, is versatile and computationally tractable...
Persistent link: https://www.econbiz.de/10011190731
In this paper a new Bayesian approach is proposed to test a point null hypothesis based on the deviance in a decision-theoretical framework. The proposed test statistic may be regarded as the Bayesian version of the likelihood ratio test and appeals in practical applications with three desirable...
Persistent link: https://www.econbiz.de/10010730124
We extend the asymmetric, stochastic, volatility model by modeling the return-volatility distribution nonparametrically. The novelty is modeling this distribution with an infinite mixture of Normals, where the mixture unknowns have a Dirichlet process prior. Cumulative Bayes factors show our...
Persistent link: https://www.econbiz.de/10010730133
In this paper we consider Bayesian estimation of restricted conditional moment models with the linear regression as a particular example. A common practice in the Bayesian literature for linear regression and other semi-parametric models is to use flexible families of distributions for the...
Persistent link: https://www.econbiz.de/10010730143