Showing 1 - 2 of 2
We study a general equilibrium model formulated as a smooth system of equations coupled with complementarity conditions relative to the <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$n$$</EquationSource> </InlineEquation>-dimensional Lorentz cone. For the purpose of analysis, as well as for the design of algorithms, we exploit the fact that the Lorentz cone is...</equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010994129
Let <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\{a_i:i\in I\}$$</EquationSource> </InlineEquation> be a finite set in <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\mathbb R ^n$$</EquationSource> </InlineEquation>. The illumination problem addressed in this work is about selecting an apex <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$z$$</EquationSource> </InlineEquation> in a prescribed set <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$Z\subseteq \mathbb R ^n$$</EquationSource> </InlineEquation> and a unit vector <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$y\in \mathbb R ^n$$</EquationSource> </InlineEquation> so that the conic light beam <Equation ID="Equ55"> <EquationSource Format="TEX">$$\begin{aligned}...</equationsource></equation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010994146