Showing 1 - 10 of 10
For a continuous multi-objective optimization problem, it is usually not a practical approach to compute all its nondominated points because there are infinitely many of them. For this reason, a typical approach is to compute an approximation of the nondominated set. A common technique for this...
Persistent link: https://www.econbiz.de/10014501617
In many real world problems, optimisation decisions have to be made with limited information. The decision maker may have no a priori or posteriori data about the often nonconvex objective function except from on a limited number of data points. The scarcity of data may be due to high cost of...
Persistent link: https://www.econbiz.de/10010994100
Innovization (innovation through optimization) is a relatively new concept in the field of multi-objective engineering design optimization. It involves the use of Pareto-optimal solutions of a problem to unveil hidden mathematical relationships between variables, objectives and constraint...
Persistent link: https://www.econbiz.de/10010845792
This paper presents a novel method of multi-objective optimization by learning automata (MOLA) to solve complex multi-objective optimization problems. MOLA consists of multiple automata which perform sequential search in the solution domain. Each automaton undertakes dimensional search in the...
Persistent link: https://www.econbiz.de/10010845829
Pareto-based multi-objective optimization algorithms prefer non-dominated solutions over dominated solutions and maintain as much as possible diversity in the Pareto optimal set to represent the whole Pareto-front. This paper proposes three multi-objective Artificial Bee Colony (ABC) algorithms...
Persistent link: https://www.econbiz.de/10010845868
Meta-heuristic methods such as genetic algorithms (GA) and particle swarm optimization (PSO) have been extended to multi-objective optimization problems, and have been observed to be useful for finding good approximate Pareto optimal solutions. In order to improve the convergence and the...
Persistent link: https://www.econbiz.de/10010896374
This paper presents the conic scalarization method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the zero sublevel set of every function from this class is a convex...
Persistent link: https://www.econbiz.de/10010896378
A novel fitness sharing method for MOGA (Multi-Objective Genetic Algorithm) is proposed by combining a new sharing function and sided degradations in the sharing process, with preference to either of two close solutions. The modified MOGA adopting the new sharing approach is named as MOGAS....
Persistent link: https://www.econbiz.de/10010634253
Persistent link: https://www.econbiz.de/10009149556
The earliest approaches to the cell formation problem in group technology, dealing with a binary machine-part incidence matrix, were aimed only at minimizing the number of intercell moves (exceptional elements in the block-diagonalized matrix). Later on this goal was extended to simultaneous...
Persistent link: https://www.econbiz.de/10011151230