Showing 1 - 3 of 3
Kernel Based Regression (KBR) minimizes a convex risk over a possibly infinite dimensional reproducing kernel Hilbert space. Recently, it was shown that KBR with a least squares loss function may have some undesirable properties from a robustness point of view: even very small amounts of...
Persistent link: https://www.econbiz.de/10008521101
Deepest regression (DR) is a method for linear regression introduced by P. J. Rousseeuw and M. Hubert (1999, J. Amer. Statis. Assoc.94, 388-402). The DR method is defined as the fit with largest regression depth relative to the data. In this paper we show that DR is a robust method, with...
Persistent link: https://www.econbiz.de/10005093712
Motivated by the notion of regression depth (Rousseeuw and Hubert, 1996) we introduce thecatline, a new method for simple linear regression. At any bivariate data setZn={(xi, yi);i=1, ..., n} its regression depth is at leastn/3. This lower bound is attained for data lying on a convex or...
Persistent link: https://www.econbiz.de/10005093787