Showing 1 - 10 of 59
The nonparametric censored regression model, with a fixed, known censoring point (normalized to zero), is y = max[0,m(x) + e], where both the regression function m(x) and the distribution of the error e are unknown. This paper provides estimators of m(x) and its derivatives. The convergence rate...
Persistent link: https://www.econbiz.de/10010745070
Persistent link: https://www.econbiz.de/10010745632
A statistical problem that arises in several fields is that of estimating the features of an unknown distribution, which may be conditioned on covariates, using a sample of binomial observations on whether draws from this distribution exceed threshold levels set by experimental design....
Persistent link: https://www.econbiz.de/10010746131
Let r (x, z) be a function that, along with its derivatives, can be consistently estimated nonparametrically. This paper discusses identification and consistent estimation of the unknown functions H, M, G and F, where r (x, z) = H [M (x, z)] and M (x, z) = G(x) + F (z). An estimation algorithm...
Persistent link: https://www.econbiz.de/10011071234
We introduce an alternative version of the Fama-French three-factor model of stock returns together with a new estimation methodology. We assume that the factor betas in the model are smooth nonlinear functions of observed security characteristics. We develop an estimation procedure that...
Persistent link: https://www.econbiz.de/10010884698
We investigate a new separable nonparametric model for time series, which includes many ARCH models and AR models already discussed in the literature. We also propose a new estimation procedure based on a localization of the econometric method of instrumental variables. Our method has...
Persistent link: https://www.econbiz.de/10010884733
A semiparametric hazard model with parametrized time but general covariate dependency is formulated and analyzed inside the framework of counting process theory. A profile likelihood principle is introduced for estimation of the parameters: the resulting estimator is n1/2-consistent,...
Persistent link: https://www.econbiz.de/10010928597
We introduce a kernel-based estimator of the density function and regression function for data that have been grouped into family totals. We allow for a common intra-family component but require that observations from different families be in dependent. We establish consistency and asymptotic...
Persistent link: https://www.econbiz.de/10010928627
Persistent link: https://www.econbiz.de/10010928652
This paper is concerned with the practical problem of conducting inference in a vector time series setting when the data are unbalanced or incomplete. In this case, one can work with only the common sample, to which a standard HAC/ bootstrap theory applies, but at the expense of throwing away...
Persistent link: https://www.econbiz.de/10010928657