Showing 1 - 3 of 3
Efficient semiparametric and parametric estimates are developed for a spatial autoregressive model, containing nonstochastic explanatory variables and innovations suspected to be non-normal. The main stress is on the case of distribution of unknown, nonparametric, form, where series...
Persistent link: https://www.econbiz.de/10010928599
This paper develops consistency and asymptotic normality of parameter estimates for a higher-order spatial autoregressive model whose order, and number of regressors, are allowed to approach infinity slowly with sample size. Both least squares and instrumental variables estimates are examined,...
Persistent link: https://www.econbiz.de/10011171757
A valid Edgeworth expansion is established for the limit distribution of density-weighted semiparametric averaged derivative estimates of single index models. The leading term that corrects the normal limit varies in magnitude, depending on the choice of bandwidth and kernel order. In general...
Persistent link: https://www.econbiz.de/10011071403