Showing 1 - 10 of 12
We suggest two improved methods for conditional density estimation. The rst is based on locally tting a log-linear model, and is in the spirit of recent work on locally parametric techniques in density estimation. The second method is a constrained local polynomial estimator. Both methods always...
Persistent link: https://www.econbiz.de/10011125947
Persistent link: https://www.econbiz.de/10010928648
Varying-coefficient linear models arise from multivariate nonparametric regression, nonlinear time series modelling and forecasting, functional data analysis, longitudinal data analysis, and others. It has been a common practice to assume that the vary-coefficients are functions of a given...
Persistent link: https://www.econbiz.de/10010928774
Varying-coefficient linear models arise from multivariate nonparametric regression, nonlinear time series modelling and forecasting, functional data analysis, longitudinal data analysis, and others. It has been a common practice to assume that the vary-coefficients are functions of a given...
Persistent link: https://www.econbiz.de/10011126172
For a set of spatially dependent dynamical models, we propose a method for estimating parameters that control temporal dynamics by spatial smoothing. The new approach is particularly relevant for analyzing spatially distributed panels of short time series. The asymptotic results show that...
Persistent link: https://www.econbiz.de/10011126442
The local linear regression technique is applied to estimation of functional-coefficient regression models for time series data. The models include threshold autoregressive models and functional-coefficient autoregressive models as special cases but with the added advantages such as depicting...
Persistent link: https://www.econbiz.de/10011126715
We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen, Marron, Turlach and Wand...
Persistent link: https://www.econbiz.de/10010744974
We derive the asymptotic distribution of a new backfitting procedure for estimating the closest additive approximation to a nonparametric regression function. The procedure employs a recent projection interpretation of popular kernel estimators provided by Mammen, Marron, Turlach and Wand and...
Persistent link: https://www.econbiz.de/10010746685
We propose a general two-step estimation method for the structural parameters of popular semiparametric Markovian discrete choice models that include a class of Markovian Games and allow for continuous observable state space. The estimation procedure is simple as it directly generalizes the...
Persistent link: https://www.econbiz.de/10011126717
We investigate the time-varying ARCH (tvARCH) process. It is shown that it can be used to describe the slow decay of the sample autocorrelations of the squared returns often observed in financial time series, which warrants the further study of parameter estimation methods for the model. Since...
Persistent link: https://www.econbiz.de/10011071356