Showing 1 - 10 of 11
This paper proposes a class of locally stationary diffusion processes. The model has a time varying but locally linear drift and a volatility coefficient that is allowed to vary over time and space. We propose estimators of all the unknown quantities based on long span data. Our estimation...
Persistent link: https://www.econbiz.de/10013135540
We propose a general two-step estimation method for the structural parameters of popular semiparametric Markovian discrete choice models that include a class of Markovian Games and allow for continuous observable state space. The estimation procedure is simple as it directly generalizes the...
Persistent link: https://www.econbiz.de/10013135541
We propose a new method of testing stochastic dominance which improves on existing tests based on bootstrap or subsampling. Our test requires estimation of the contact sets between the marginal distributions. Our tests have asymptotic sizes that are exactly equal to the nominal level uniformly...
Persistent link: https://www.econbiz.de/10013159967
Let r (x, z) be a function that, along with its derivatives, can be consistently estimated nonparametrically. This paper discusses identification and consistent estimation of the unknown functions H, M, G and F, where r (x, z) = H [M (x, z)] and M (x, z) = G(x) + F (z). An estimation algorithm...
Persistent link: https://www.econbiz.de/10012770898
This paper is concerned with the practical problem of conducting inference in a vector time series setting when the data is unbalanced or incomplete. In this case, one can work only with the common sample, to which a standard HAC/Bootstrap theory applies, but at the expense of throwing away data...
Persistent link: https://www.econbiz.de/10012771012
We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator, a marginal average estimator and a (marginal) propensity score weighted estimator are defined. All the estimators are proved to be asymptotically normal,...
Persistent link: https://www.econbiz.de/10012771022
We investigate the performance of a class of semiparametric estimators of the treatment effect via asymptotic expansions. We derive approximations to the first two moments of the estimator that are valid to 'second order'. We use these approximations to define a method of bandwidth selection. We...
Persistent link: https://www.econbiz.de/10012771023
We provide easy to verify sufficient conditions for the consistency and asymptotic normality of a class of semiparametric optimization estimators where the criterion function does not obey standard smoothness conditions and simultaneously depends on some nonparametric estimators that can...
Persistent link: https://www.econbiz.de/10012771026
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum...
Persistent link: https://www.econbiz.de/10012771041
We introduce a kernel-based estimator of the density function and regression function for data that have been grouped into family totals. We allow for a common intra-family component but require that observations from different families be in dependent. We establish consistency and asymptotic...
Persistent link: https://www.econbiz.de/10012771053