Showing 1 - 6 of 6
We propose a smoothed least squares estimator of the parameters of a threshold regression model. Our model generalizes that considered in Hansen (2000) to allow the thresholding to depend on a linear index of observed regressors, thus allowing discrete variables to enter. We also do not assume...
Persistent link: https://www.econbiz.de/10012770910
We develop inference tools in a semiparametric regression model with missing response data. A semiparametric regression imputation estimator, a marginal average estimator and a (marginal) propensity score weighted estimator are defined. All the estimators are proved to be asymptotically normal,...
Persistent link: https://www.econbiz.de/10012771022
We propose a new estimator for nonparametric regression based on local likelihood estimation using an estimated error score function obtained from the residuals of a preliminary nonparametric regression. We show that our estimator is asymptotically equivalent to the infeasible local maximum...
Persistent link: https://www.econbiz.de/10012771041
The nonparametric censored regression model, with a fixed, known censoring point (normalized to zero), is y = max[0,m(x) + e], where both the regression function m(x) and the distribution of the error e are unknown. This paper provides estimators of m(x) and its derivatives. The convergence rate...
Persistent link: https://www.econbiz.de/10012771058
We propose a semiparametric IGARCH model that allows for persistence in variance but also allows for more flexible functional form. We assume that the difference of the squared process is weakly stationary. We propose an estimation strategy based on the nonparametric instrumental variable...
Persistent link: https://www.econbiz.de/10013148177
We use local polynomial fitting to estimate the nonparametric M-regression function for strongly mixing stationary processes {(Y_i,▁X_i ) } . We establish a strong uniform consistency rate for the Bahadur representation of estimators of the regression function and its derivatives. These...
Persistent link: https://www.econbiz.de/10013148183