Showing 1 - 4 of 4
This paper proposes a class of locally stationary diffusion processes. The model has a time varying but locally linear drift and a volatility coefficient that is allowed to vary over time and space. We propose estimators of all the unknown quantities based on long span data. Our estimation...
Persistent link: https://www.econbiz.de/10013135540
This paper is concerned with the practical problem of conducting inference in a vector time series setting when the data is unbalanced or incomplete. In this case, one can work only with the common sample, to which a standard HAC/Bootstrap theory applies, but at the expense of throwing away data...
Persistent link: https://www.econbiz.de/10012771012
We propose a modification of kernel time series regression estimators that improves efficiency when the innovation process is autocorrelated. The procedure is based on a pre-whitening transformation of the dependent variable that has to be estimated from the data. We establish the asymptotic...
Persistent link: https://www.econbiz.de/10012771029
We propose a multivariate generalization of the multiplicative volatility model of Engle and Rangel (2008), which has a nonparametric long run component and a unit multivariate GARCH short run dynamic component. We suggest various kernel-based estimation procedures for the parametric and...
Persistent link: https://www.econbiz.de/10013148178