Showing 1 - 9 of 9
This article proposes a class of goodness-of-fit tests for the autocorrelation function of a time series process, including those exhibiting long-range dependence. Test statistics for composite hypotheses are functionals of a (approximated) martingale transformation of the Bartlett's Tp-process...
Persistent link: https://www.econbiz.de/10012771005
Whittle pseudo-maximum likelihood estimates of parameters for stationary time series have been found to be consistent and asumptotically normal in the presence of long-range dependence. Generalizing the definition of the memory parameter d, we extend these results to include possibly...
Persistent link: https://www.econbiz.de/10012771056
We establish valid Edgeworth expansions for the distribution of smoothed nonparametric spectral estimates, and of studentized versions of linear statistics such as the same mean, where the studentization employs such a nonparametric spectral estimate. Particular attention is paid to the spectral...
Persistent link: https://www.econbiz.de/10012771059
Power law or generalized polynomial regressions with unknown real-valued exponents and coefficients, and weakly dependent errors, are considered for observations over time, space or space-time. Consistency and asymptotic normality of nonlinear least squares estimates of the parameters are...
Persistent link: https://www.econbiz.de/10013119983
We consider cross-sectional data that exhibit no spatial correla- tion, but are feared to be spatially dependent. We demonstrate that a spatial version of the stochastic volatility model of financial econometrics, entailing a form of spatial autoregression, can explain such behaviour. The...
Persistent link: https://www.econbiz.de/10013159960
Disregarding spatial dependence can invalidate methods for analyzing cross-sectional and panel data. We discuss ongoing work on developing methods that allow for, test for, or estimate, spatial dependence. Much of the stress is on nonparametric and semiparametric methods
Persistent link: https://www.econbiz.de/10013159962
The central limit theorem for nonparametric kernel estimates of a smooth trend, with linearly-generated errors, indicates asymptotic independence and homoscedasticity across fixed points, irrespective of whether disturbances have short memory, long memory, or antipersistence. However, the...
Persistent link: https://www.econbiz.de/10013159963
We provide a general class of tests for correlation in time series, spatial, spatiotemporal and cross-sectional data. We motivate our focus by reviewing how computational and theoretical difficulties of point estimation mount as one moves from regularly-spaced time series data, through forms of...
Persistent link: https://www.econbiz.de/10013159965
Moving from univariate to bivariate jointly dependent long memory time series introduces a phase parameter (gamma), at the frequency of principal interest, zero; for short memory series gamma = 0 automatically. The latter case has also been stressed under long memory, along with the...
Persistent link: https://www.econbiz.de/10012770886