Showing 1 - 3 of 3
This paper presents the R package bayesGARCH which provides functions for the Bayesian estimation of the parsimonious but effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling...
Persistent link: https://www.econbiz.de/10005015589
This chapter proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to...
Persistent link: https://www.econbiz.de/10008498470
Using well-known GARCH models for density prediction of daily S&P 500 and Nikkei 225 index returns, a comparison is provided between frequentist and Bayesian estimation. No significant difference is found between the qualities of the forecasts of the whole density, whereas the Bayesian approach...
Persistent link: https://www.econbiz.de/10008805887