Showing 1 - 3 of 3
Through Monte Carlo experiments, this paper compares the performances of different gradient optimization algorithms, when performing full information maximum likelihood (FIML) estimation of econometric models. Different matrices are used (Hessian, outer products matrix, GLS-type matrix, as well...
Persistent link: https://www.econbiz.de/10008565138
With most of the available software packages, estimates of the parameter covariance matrix in a GARCH model are usually obtained from the outer products of the first derivatives of the log-likelihoods (BHHH estimator). However, other estimators could be defined and used, analogous to the...
Persistent link: https://www.econbiz.de/10008490468
Full information maximum likelihood estimation of econometric models, linear and nonlinear in variables, is performed by means of two gradient algorithms, using either the Hessian matrix or a computationally simpler approximation. In the first part of the paper, the behavior of the two methods...
Persistent link: https://www.econbiz.de/10008855810