Showing 1 - 10 of 16
We point out that the ideas underlying some test procedures recently proposed for testing post-model-selection (and for some other test problems) in the econometrics literature have been around for quite some time in the statistics literature. We also sharpen some of these results in the...
Persistent link: https://www.econbiz.de/10011108819
We consider inference post-model-selection in linear regression. In this setting, Berk et al.(2013) recently introduced a class of confidence sets, the so-called PoSI intervals, that cover a certain non-standard quantity of interest with a user-specified minimal coverage probability,...
Persistent link: https://www.econbiz.de/10011109357
We compare several confidence intervals after model selection in the setting recently studied by Berk et al. (2013), where the goal is to cover not the true parameter but a certain non-standard quantity of interest that depends on the selected model. In particular, we compare the PoSI-intervals...
Persistent link: https://www.econbiz.de/10011109900
We compare several confidence intervals after model selection in the setting recently studied by Berk et al. (2013), where the goal is to cover not the true parameter but a certain non-standard quantity of interest that depends on the selected model. In particular, we compare the PoSI-intervals...
Persistent link: https://www.econbiz.de/10011111130
Testing restrictions on regression coefficients in linear models often requires correcting the conventional F-test for potential heteroscedasticity or autocorrelation amongst the disturbances, leading to so-called heteroskedasticity and autocorrelation robust test procedures. These procedures...
Persistent link: https://www.econbiz.de/10011113717
The behavior of the power function of autocorrelation tests such as the Durbin-Watson test in time series regressions or the Cliff-Ord test in spatial regression models has been intensively studied in the literature. When the correlation becomes strong, Krämer (1985) (for the Durbin-Watson...
Persistent link: https://www.econbiz.de/10011127579
Confidence sets based on sparse estimators are shown to be large compared to more standard confidence sets, demonstrating that sparsity of an estimator comes at a substantial price in terms of the quality of the estimator. The results are set in a general parametric or semiparametric framework.
Persistent link: https://www.econbiz.de/10005014743
Given a random sample from a parametric model, we show how indirect inference estimators based on appropriate nonparametric density estimators (i.e., simulation-based minimum distance estimators) can be constructed that, under mild assumptions, are asymptotically normal with variance-covarince...
Persistent link: https://www.econbiz.de/10005078668
The finite-sample coverage properties of confidence intervals based on penalized maximum likelihood estimators like the LASSO, adaptive LASSO, and hard-thresholding are analyzed. It is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the...
Persistent link: https://www.econbiz.de/10005026624
We consider the problem of estimating the unconditional distribution of a post-model-selection estimator. The notion of a post-model-selection estimator here refers to the combined procedure resulting from first selecting a model (e.g., by a model selection criterion like AIC or by a hypothesis...
Persistent link: https://www.econbiz.de/10005619444