Showing 1 - 10 of 10
Persistent link: https://www.econbiz.de/10010204047
Persistent link: https://www.econbiz.de/10012650154
Persistent link: https://www.econbiz.de/10012505370
We propose a new asset-pricing framework in which all securities' signals are used to predict each individual return. While the literature focuses on each security's own- signal predictability, assuming an equal strength across securities, our framework is flexible and includes...
Persistent link: https://www.econbiz.de/10012271188
Persistent link: https://www.econbiz.de/10011874111
Persistent link: https://www.econbiz.de/10011446196
We investigate the performance of non-linear return prediction models in the high complexity regime, i.e., when the number of model parameters exceeds the number of observations. We document a "virtue of complexity" in all asset classes that we study (US equities, international equities, bonds,...
Persistent link: https://www.econbiz.de/10013403787
Persistent link: https://www.econbiz.de/10014280204
We theoretically characterize the behavior of machine learning asset pricing models. We prove that expected out-of-sample model performance—in terms of SDF Sharpe ratio and average pricing errors—is improving in model parameterization (or “complexity”). Our results predict that the best...
Persistent link: https://www.econbiz.de/10014254198
We propose that investment strategies should be evaluated based on their net-of-trading-cost return for each level of risk, which we term the "implementable efficient frontier." While numerous studies use machine learning return forecasts to generate portfolios, their agnosticism toward trading...
Persistent link: https://www.econbiz.de/10013492674