Hu, Gaoge; Gao, Shesheng; Zhong, Yongmin; Gu, Chengfan - In: Metrika 77 (2014) 4, pp. 451-468
This paper presents a new random weighting method to estimation of the stable exponent. Assume that <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$X_1, X_2, \ldots ,X_n$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msub> <mi>X</mi> <mi>n</mi> </msub> </mrow> </math> </EquationSource> </InlineEquation> is a sequence of independent and identically distributed random variables with <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\alpha $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">α</mi> </math> </EquationSource> </InlineEquation>-stable distribution G, where <InlineEquation ID="IEq3"> <EquationSource...</equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>