Showing 1 - 7 of 7
In this paper, we consider a model selection issue in semiparametric panel data models with fixed effects. The modelling framework under investigation can accommodate both nonlinear deterministic trends and cross-sectional dependence. And we consider the so-called "large panels" where both the...
Persistent link: https://www.econbiz.de/10010958955
This paper investigates the empirical properties of autoregressive approximations to two classes of process for which the usual regularity conditions do not apply; namely the non-invertible and fractionally integrated processes considered in Poskitt (2006). In that paper the theoretical...
Persistent link: https://www.econbiz.de/10005087579
Autoregressive models are commonly employed to analyze empirical time series. In practice, however, any autoregressive model will only be an approximation to reality and in order to achieve a reasonable approximation and allow for full generality the order of the autoregression, h say, must be...
Persistent link: https://www.econbiz.de/10005087597
In this paper, we study semiparametric estimation for a single-index panel data model where the nonlinear link function varies among the individuals. We propose using the refined minimum average variance estimation method to estimate the parameter in the single-index. As the cross-section...
Persistent link: https://www.econbiz.de/10009318805
In this paper, we consider semiparametric estimation in a partially linear single-index panel data model with fixed effects. Without taking the difference explicitly, we propose using a semiparametric minimum average variance estimation (SMAVE) based on a dummy-variable method to remove the...
Persistent link: https://www.econbiz.de/10009318807
A semiparametric fixed effects model is introduced to describe the nonlinear trending phenomenon in panel data analysis and it allows for the cross-sectional dependence in both the regressors and the residuals. A pooled semiparametric profile likelihood dummy variable approach based on the...
Persistent link: https://www.econbiz.de/10009318812
In this paper we investigate the use of description length principles to select an appropriate number of basis functions for functional data. We provide a flexible definition of the dimension of a random function that is constructed directly from the Karhunen-Loève expansion of the observed...
Persistent link: https://www.econbiz.de/10008491359