Showing 1 - 10 of 13
Automatic forecasts of large numbers of univariate time series are often needed in business and other contexts. We describe two automatic forecasting algorithms that have been implemented in the forecast package for R. The first is based on innovations state space models that underly exponential...
Persistent link: https://www.econbiz.de/10005149030
An approach to exponential smoothing that relies on a linear single source of error state space model is outlined. A maximum likelihood method for the estimation of associated smoothing parameters is developed. Commonly used restrictions on the smoothing parameters are rationalised. Issues...
Persistent link: https://www.econbiz.de/10005149042
The Theta method of forecasting performed particularly well in the M3-competition and is therefore of interest to forecast practitioners. The description of the method given by Assimakopoulos and Nikolopoulos (2000) involves several pages of algebraic manipulation and is difficult to comprehend....
Persistent link: https://www.econbiz.de/10005149043
In the exponential smoothing approach to forecasting, restrictions are often imposed on the smoothing parameters which ensure that certain components are exponentially weighted averages. In this paper, a new general restriction is derived on the basis that the one-step ahead prediction error can...
Persistent link: https://www.econbiz.de/10005149124
In this article we discuss invertibility conditions for some state space models, including the models that underly simple exponential smoothing, Holt's linear method, Holt-Winters' additive method and damped trend versions of Holt's and Holt-Winters' methods. The parameter space for which the...
Persistent link: https://www.econbiz.de/10005149126
Organizations with large-scale inventory systems typically have a large proportion of items for which demand is intermittent and low volume. We examine different approaches to forecasting for such products, paying particular attention to the need for inventory planning over a multi-period...
Persistent link: https://www.econbiz.de/10008508605
A new automatic forecasting procedure is proposed based on a recent exponential smoothing framework which incorporates a Box-Cox transformation and ARMA residual corrections. The procedure is complete with well-defined methods for initialization, estimation, likelihood evaluation, and analytical...
Persistent link: https://www.econbiz.de/10008467331
We consider the properties of nonlinear exponential smoothing state space models under various assumptions about the innovations, or error, process. Our interest is restricted to those models that are used to describe non-negative observations, because many series of practical interest are so...
Persistent link: https://www.econbiz.de/10005125278
A Kalman filter, suitable for application to a stationary or a non-stationary time series, is proposed. It works on time series with missing values. It can be used on seasonal time series where the associated state space model may not satisfy the traditional observability condition. A new...
Persistent link: https://www.econbiz.de/10005581117
This paper discusses the instability of eleven nonlinear state space models that underly exponential smoothing. Hyndman et al. (2002) proposed a framework of 24 state space models for exponential smoothing, including the well-known simple exponential smoothing, Holt's linear and Holt-Winters'...
Persistent link: https://www.econbiz.de/10005581140