Showing 1 - 10 of 97
A Bayesian Markov Chain Monte Carlo methodology is developed for estimating the stochastic conditional duration model. The conditional mean of durations between trades is modelled as a latent stochastic process, with the conditional distribution of durations having positive support. The sampling...
Persistent link: https://www.econbiz.de/10005149083
In recent years, analysis of financial time series has focused largely on data related to market trading activity. Apart from modelling the conditional variance of returns within the GARCH family of models, presently attention has also been devoted to other market variables, especially volumes,...
Persistent link: https://www.econbiz.de/10010958946
The parameters in duration models are usually estimated by a Quasi Maximum Likelihood Estimator [QMLE]. This estimator is efficient if the errors are iid and exponentially distributed. Otherwise, it may not be the most efficient. Motivated by this, a class of estimators has been introduced by...
Persistent link: https://www.econbiz.de/10005149120
A crucially important advantage of the semiparametric regression approach to the nonlinear autoregressive conditional duration (ACD) model developed in Wongsaart et al. (2011), i.e. the so-called Semiparametric ACD (SEMI-ACD) model, is the fact that its estimation method does not require a...
Persistent link: https://www.econbiz.de/10009318813
This paper proposes a semiparametric method for estimating duration models when there are inequality constraints on some parameters and the error distribution may be unknown. Thus, the setting considered here is particularly suitable for practical applications. The parameters in duration models...
Persistent link: https://www.econbiz.de/10005581147
We provide Markov chain Monte Carlo (MCMC) algorithms for computing the bandwidth matrix for multivariate kernel density estimation. Our approach is based on treating the elements of the bandwidth matrix as parameters to be estimated, which we do by optimizing the likelihood cross-validation...
Persistent link: https://www.econbiz.de/10005149069
A new regression based approach is proposed for modeling marketing databases. The approach is Bayesian and provides a number of significant improvements over current methods. Independent variables can enter into the model in either a parametric or nonparametric manner, significant variables can...
Persistent link: https://www.econbiz.de/10005149108
Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function....
Persistent link: https://www.econbiz.de/10005149112
This paper investigates nonparametric estimation of density on [0,1]. The kernel estimator of density on [0,1] has been found to be sensitive to both bandwidth and kernel. This paper proposes a unified Bayesian framework for choosing both the bandwidth and kernel function. In a simulation study,...
Persistent link: https://www.econbiz.de/10009650286
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This...
Persistent link: https://www.econbiz.de/10009366291