Showing 1 - 10 of 100
This paper uses half-hourly electricity demand data in South Australia as an empirical study of nonparametric modeling and forecasting methods for prediction from half-hour ahead to one year ahead. A notable feature of the univariate time series of electricity demand is the presence of both...
Persistent link: https://www.econbiz.de/10008725785
In this paper, we present a Markov chain Monte Carlo (MCMC) simulation algorithm for estimating parameters in the kernel density estimation of bivariate insurance claim data via transformations. Our data set consists of two types of auto insurance claim costs and exhibit a high-level of skewness...
Persistent link: https://www.econbiz.de/10008679042
Since conventional cross-validation bandwidth selection methods do not work for the case where the data considered are serially dependent, alternative bandwidth selection methods are needed. In recent years, Bayesian based global bandwidth selection methods have been proposed. Our experience...
Persistent link: https://www.econbiz.de/10010958940
In this paper, we consider a semiparametric single index panel data mode with cross-sectional dependence, high-dimensionality and stationarity. Meanwhile, we allow fixed effects to be correlated with the regressors to capture unobservable heterogeneity. Under a general spatial error dependence...
Persistent link: https://www.econbiz.de/10010958943
In this paper, we consider a model selection issue in semiparametric panel data models with fixed effects. The modelling framework under investigation can accommodate both nonlinear deterministic trends and cross-sectional dependence. And we consider the so-called "large panels" where both the...
Persistent link: https://www.econbiz.de/10010958955
Estimation in two classes of popular models, single-index models and partially linear single-index models, is studied in this paper. Such models feature nonstationarity. Orthogonal series expansion is used to approximate the unknown integrable link function in the models and a profile approach...
Persistent link: https://www.econbiz.de/10010958956
This paper is motivated by our attempt to answer an empirical question: how is private health insurance take-up in Australia affected by the income threshold at which the Medicare Levy Surcharge (MLS) kicks in? We propose a new difference de-convolution kernel estimator for the location and size...
Persistent link: https://www.econbiz.de/10011262824
In this paper, we consider a partially linear panel data model with cross-sectional dependence and non-stationarity. Meanwhile, we allow fixed effects to be correlated with the regressors to capture unobservable heterogeneity. Under a general spatial error dependence structure, we then...
Persistent link: https://www.econbiz.de/10011262825
We show how cubic smoothing splines fitted to univariate time series data can be used to obtain local linear forecasts. Our approach is based on a stochastic state space model which allows the use of a likelihood approach for estimating the smoothing parameter, and which enables easy...
Persistent link: https://www.econbiz.de/10005087585
A semiparametric method is studied for estimating the dependence parameter and the joint distribution of the error term in a class of multivariate time series models when the marginal distributions of the errors are unknown. This method is a natural extension of Genest et al. (1995a) for...
Persistent link: https://www.econbiz.de/10005149050