Showing 1 - 10 of 129
In this paper we extend the univariate FIGARCH and FIAPARCH models to a bivariate framework. We estimate bivariate error correction FIGARCH and FIAPARCH models between the All Ordinaries Index and its SPI futures using constant correlation and diagonal parameterisations. We therefore employ a...
Persistent link: https://www.econbiz.de/10005581144
This paper investigates the accuracy of bootstrap-based bias correction of persistence measures for long memory fractionally integrated processes. The bootstrap method is based on the semi-parametric sieve approach, with the dynamics in the long memory process captured by an autoregressive...
Persistent link: https://www.econbiz.de/10010958957
The aim of this paper is to examine the measurement of persistence in a range of time series models nested in the framework of Cramer (1961). This framework is a generalization of the Wold (1938) decomposition for stationary time series which, in addition to accommodating the standard I(0) and...
Persistent link: https://www.econbiz.de/10005149028
We review the past 25 years of time series research that has been published in journals managed by the International Institute of Forecasters (Journal of Forecasting 1982-1985; International Journal of Forecasting 1985-2005). During this period, over one third of all papers published in these...
Persistent link: https://www.econbiz.de/10005427625
This paper considers Beveridge-Nelson decomposition in a context where the permanent and transitory components both follow a Markov switching process. Our approach incorporates Markov switching into a single source of error state-space framework, allowing business cycle asymmetries and regime...
Persistent link: https://www.econbiz.de/10005087574
Intermittent demand commonly occurs with inventory data, with many time periods having no demand and small demand in the other periods. Croston's method is a widely used procedure for intermittent demand forecasting. However, it is an ad hoc method with no properly formulated underlying...
Persistent link: https://www.econbiz.de/10005087603
This paper proposes neural network based measures of predictability in conditional mean, and then uses them to construct nonlinear analogues to autocorrelograms and partial autocorrelograms. In contrast to other measures of nonlinear dependence that rely on nonparametric estimation of densities...
Persistent link: https://www.econbiz.de/10005087615
This paper develops a new non-linear model to analyse the business cycle by exploiting the relationship between the asymmetrical behaviour of the cycle and leading indicators. The model proposed is an innovations form of the structural model underlying simple exponential smoothing that is...
Persistent link: https://www.econbiz.de/10005149035
A well known property of the Beveridge Nelson decomposition is that the innovations in the permanent and transitory components are perfectly correlated. We use a single source of error state space model to exploit this property and perform a Beveridge Nelson decomposition. The single source of...
Persistent link: https://www.econbiz.de/10005149053
Given that it is quite impractical to use standard model selection criteria in a nonlinear modeling context, the builders of nonlinear models often choose lag length by setting it equal to the lag length chosen for a linear autoregression of the data. This paper studies the performance of this...
Persistent link: https://www.econbiz.de/10005149065