Showing 1 - 10 of 124
This paper proposes a class of stochastic volatility (SV) models which offers an alternative to the one introduced in Andersen (1994). The class encompasses all standard SV models that have appeared in the literature, including the well known lognormal model, and allows us to empirically test...
Persistent link: https://www.econbiz.de/10005149106
In this paper we quantify the impact of model mis-specification on the properties of parameter estimators applied to fractionally integrated processes. We demonstrate the asymptotic equivalence of four alternative parametric methods: frequency domain maximum likelihood, Whittle estimation, time...
Persistent link: https://www.econbiz.de/10010958942
This paper investigates the use of bootstrap-based bias correction of semi-parametric estimators of the long memory parameter in fractionally integrated processes. The re-sampling method involves the application of the sieve boot-strap to data pre-filtered by a preliminary semi-parametric...
Persistent link: https://www.econbiz.de/10010958954
This paper investigates the accuracy of bootstrap-based bias correction of persistence measures for long memory fractionally integrated processes. The bootstrap method is based on the semi-parametric sieve approach, with the dynamics in the long memory process captured by an autoregressive...
Persistent link: https://www.econbiz.de/10010958957
One of the most widely used standard procedures for model evaluation in classification and regression is K-fold cross-validation (CV). However, when it comes to time series forecasting, because of the inherent serial correlation and potential non-stationarity of the data, its application is not...
Persistent link: https://www.econbiz.de/10011268570
This paper compares and generalizes some testing procedures for structural change in the context of cointegrated regression models.
Persistent link: https://www.econbiz.de/10005087594
Automatic forecasts of large numbers of univariate time series are often needed in business and other contexts. We describe two automatic forecasting algorithms that have been implemented in the forecast package for R. The first is based on innovations state space models that underly exponential...
Persistent link: https://www.econbiz.de/10005149030
The local linear trend and global linear trend models embody extreme assumptions about trends. According to the local linear trend formulation the level and growth rate are allowed to rapidly adapt to changes in the data path. On the other hand, the Glaobal linear trend model makes no allowance...
Persistent link: https://www.econbiz.de/10005149074
The stochastic volatility model enjoys great success in modeling the time-varying volatility of asset returns. There are several specifications for volatility including the most popular one which allows logarithmic volatility to follow an autoregressive Gaussian process, known as log-normal...
Persistent link: https://www.econbiz.de/10005149092
This paper investigates the accuracy of bootstrap-based inference in the case of long memory fractionally integrated processes. The re-sampling method is based on the semi-parametric sieve approach, whereby the dynamics in the process used to produce the bootstrap draws are captured by an...
Persistent link: https://www.econbiz.de/10010542336