Showing 1 - 10 of 92
In this paper Bayesian methods are applied to a stochastic volatility model using both the prices of the asset and the prices of options written on the asset. Posterior densities for all model parameters, latent volatilities and the market price of volatility risk are produced via a hybrid...
Persistent link: https://www.econbiz.de/10005149095
This paper demonstrates the application of Bayesian simulation-based estimation to a class of interest rate models known as Affine Term Structure (ATS) models. The technique used is based on a Markov Chain Monte Carlo algorithm, with the discrete observations on yields augmented by additional...
Persistent link: https://www.econbiz.de/10005149102
Multivariate kernel regression is an important tool for investigating the relationship between a response and a set of explanatory variables. It is generally accepted that the performance of a kernel regression estimator largely depends on the choice of bandwidth rather than the kernel function....
Persistent link: https://www.econbiz.de/10005149112
This paper aims to investigate a Bayesian sampling approach to parameter estimation in the semiparametric GARCH model with an unknown conditional error density, which we approximate by a mixture of Gaussian densities centered at individual errors and scaled by a common standard deviation. This...
Persistent link: https://www.econbiz.de/10009366291
We approximate the error density of a nonparametric regression model by a mixture of Gaussian densities with means being the individual error realizations and variance a constant parameter. We investigate the construction of a likelihood and posterior for bandwidth parameters under this...
Persistent link: https://www.econbiz.de/10009275517
In this paper we propose a Bayesian method for estimating hyperbolic diffusion models. The approach is based on the Markov Chain Monte Carlo (MCMC) method after discretization via the Milstein scheme. Our simulation study shows that the hyperbolic diffusion exhibits many of the stylized facts...
Persistent link: https://www.econbiz.de/10005581113
Kernel density estimation is an important technique for understanding the distributional properties of data. Some investigations have found that the estimation of a global bandwidth can be heavily affected by observations in the tail. We propose to categorize data into low- and high-density...
Persistent link: https://www.econbiz.de/10008763786
Bandwidth plays an important role in determining the performance of nonparametric estimators, such as the local constant estimator. In this paper, we propose a Bayesian approach to bandwidth estimation for local constant estimators of time-varying coefficients in time series models. We establish...
Persistent link: https://www.econbiz.de/10011188646
This paper provides an empirical analysis of a range of alternative single-factor continuous time models for the Australian short-term interest rate. The models are indexed by the level effect parameter for the volatility in the short rate process. The inferential approach adopted is Bayesian,...
Persistent link: https://www.econbiz.de/10005427611
The concept of fractional cointegration, whereby deviations from an equilibrium relationship follow a fractionally integrated process, has attracted some attention of late. The extended concept allows cointegration to be associated with mean reversion in the error, rather than requiring the more...
Persistent link: https://www.econbiz.de/10005149058