Showing 1 - 10 of 122
In this paper, we present a Markov chain Monte Carlo (MCMC) simulation algorithm for estimating parameters in the kernel density estimation of bivariate insurance claim data via transformations. Our data set consists of two types of auto insurance claim costs and exhibit a high-level of skewness...
Persistent link: https://www.econbiz.de/10008679042
In this paper we construct a test for the difference parameter d in the fractionally integrated autoregressive moving-average (ARFIMA) model. Obtaining estimates by smoothed spectral regression estimation method, we use the moving blocks bootstrap method to construct the test for d. The results...
Persistent link: https://www.econbiz.de/10005149097
This paper is concerned with model selection based on penalized maximized log likelihood function. Its main emphasis is on how these penalities might be chosen in small samples to give good statistical properties.
Persistent link: https://www.econbiz.de/10005087604
A Bayesian approach is presented for nonparametric estimation of an additive regression model with autocorrelated errors.
Persistent link: https://www.econbiz.de/10005149033
We propose a new generic method ROPES (Regularized Optimization for Prediction and Estimation with Sparse data) for decomposing, smoothing and forecasting two-dimensional sparse data. In some ways, ROPES is similar to Ridge Regression, the LASSO, Principal Component Analysis (PCA) and...
Persistent link: https://www.econbiz.de/10010958945
This paper presents a Markov chain Monte Carlo (MCMC) algorithm to estimate parameters and latent stochastic processes in the asymmetric stochastic volatility (SV) model, in which the Box-Cox transformation of the squared volatility follows an autoregressive Gaussian distribution and the...
Persistent link: https://www.econbiz.de/10005149031
We present a local linear estimator with variable bandwidth for multivariate nonparametric regression. We prove its consistency and asymptotic normality in the interior of the observed data and obtain its rates of convergence. This result is used to obtain practical direct plug-in bandwidth...
Persistent link: https://www.econbiz.de/10005149087
In this paper we study a statistical method of implementing quasi-Bayes estimators for nonlinear and nonseparable GMM models, that is motivated by the ideas proposed in Chernozhukov and Hong (2003) and Creel and Kristensen (2011) and that combines simulation with nonparametric regression in the...
Persistent link: https://www.econbiz.de/10011093867
In this paper we propose a Bayesian method for estimating hyperbolic diffusion models. The approach is based on the Markov Chain Monte Carlo (MCMC) method after discretization via the Milstein scheme. Our simulation study shows that the hyperbolic diffusion exhibits many of the stylized facts...
Persistent link: https://www.econbiz.de/10005581113
This paper proposes a simple and improved nonparametric unit-root test. An asymptotic distribution of the proposed test is established. Finite sample comparisons with an existing nonparametric test are discussed. Some issues about possible extensions are outlined.
Persistent link: https://www.econbiz.de/10010860412