Showing 1 - 10 of 26
We propose a novel time-series econometric framework to forecast U.S. Presidential election outcomes in real time by combining polling data, economic fundamentals, and political prediction market prices. Our model estimates the joint dynamics of voter preferences across states. Applying our...
Persistent link: https://www.econbiz.de/10015194984
How can we use the novel capacities of large language models (LLMs) in empirical research? And how can we do so while accounting for their limitations, which are themselves only poorly understood? We develop an econometric framework to answer this question that distinguishes between two types of...
Persistent link: https://www.econbiz.de/10015194989
A common practice in evidence-based decision-making uses estimates of conditional probabilities P(y|x) obtained from research studies to predict outcomes y on the basis of observed covariates x. Given this information, decisions are then based on the predicted outcomes. Researchers commonly...
Persistent link: https://www.econbiz.de/10015194995
We partner with a large US payment-processing company to run a 5-year, 10 wave panel survey of incentivized quarterly sales forecasts on over 6,000 firms. We match firm predictions to proprietary revenue data to assess accuracy. We find firms forecast poorly, with issues of inaccuracy,...
Persistent link: https://www.econbiz.de/10015195030
This paper provides a comprehensive analysis of the forecastability of the real price of natural gas in the United States at the monthly frequency considering a universe of models that differ in their complexity and economic content. Our key finding is that considerable reductions in...
Persistent link: https://www.econbiz.de/10015145107
In this paper, we assemble the most comprehensive dataset to date on the characteristics of colleges and universities, including dates of operation, institutional setting, student body, staff, and finance data from 2002 to 2023. We provide an extensive description of what is known and unknown...
Persistent link: https://www.econbiz.de/10015145166
When race is not directly observed, regulators and analysts commonly predict it using algorithms based on last name and address. In small business lending--where regulators assess fair lending law compliance using the Bayesian Improved Surname Geocoding (BISG) algorithm--we document large...
Persistent link: https://www.econbiz.de/10014337878
This paper extends my research applying statistical decision theory to treatment choice with sample data, using maximum regret to evaluate the performance of treatment rules. The specific new contribution is to study as-if optimization using estimates of illness probabilities in clinical choice...
Persistent link: https://www.econbiz.de/10012660036
We study the performance of many traditional and novel, text-based variables for in-sample and out-of-sample forecasting of oil spot, futures, and energy company stock returns, and changes in oil volatility, production, and inventories. After controlling for small-sample biases, we find evidence...
Persistent link: https://www.econbiz.de/10012660057
We resuscitated the mixed-frequency vector autoregression (MF-VAR) developed in Schorfheide and Song (2015, JBES) to generate macroeconomic forecasts for the U.S. during the COVID-19 pandemic in real time. The model combines eleven time series observed at two frequencies: quarterly and monthly....
Persistent link: https://www.econbiz.de/10012794563