Showing 1 - 10 of 358
The substantial fluctuations in oil prices in the wake of the COVID-19 pandemic and the Russian invasion of Ukraine have highlighted the importance of tail events in the global market for crude oil which call for careful risk assessment. In this paper we focus on forecasting tail risks in the...
Persistent link: https://www.econbiz.de/10014544801
We argue that comprehensive out-of-sample (OOS) evaluation using statistical decision theory (SDT) should replace the current practice of K-fold and Common Task Framework validation in machine learning (ML) research. SDT provides a formal framework for performing comprehensive OOS evaluation...
Persistent link: https://www.econbiz.de/10014512123
This paper shows that shootings are predictable enough to be preventable. Using arrest and victimization records for almost 644,000 people from the Chicago Police Department, we train a machine learning model to predict the risk of being shot in the next 18 months. We address central concerns...
Persistent link: https://www.econbiz.de/10013334389
This paper proposes a new way of displaying and analyzing macroeconomic time series to form recession forecasts. The proposed data displays contain the last three years of each expansion. These allow observers to see for themselves what is different about the last year before recession. Based on...
Persistent link: https://www.econbiz.de/10013334464
We nowcast world trade using machine learning, distinguishing between tree-based methods (random forest, gradient boosting) and their regression-based counterparts (macroeconomic random forest, gradient linear boosting). While much less used in the literature, the latter are found to outperform...
Persistent link: https://www.econbiz.de/10014322806
We find evidence suggesting that surveys of professional forecasters are biased by strategic incentives. First, we find that individual forecasts overreact to idiosyncratic information but underreact to common information. Second, we show that this bias is not present in forecasts data that is...
Persistent link: https://www.econbiz.de/10014337840
This paper studies the predictability of ultra high-frequency stock returns and durations to relevant price, volume and transactions events, using machine learning methods. We find that, contrary to low frequency and long horizon returns, where predictability is rare and inconsistent,...
Persistent link: https://www.econbiz.de/10013362020
In recent years, there has been renewed interest in the moments of the yield curve (or alternatively, the term spread) as a predictor of future economic activity, defined as either recessions, or industrial production growth. In this paper, we re-examine the evidence for this predictor for the...
Persistent link: https://www.econbiz.de/10014468283
Groundwater is a key resource for agricultural production globally. Increasingly rapid aquifer drawdowns--as well as the policies intended to increase their sustainability--increase costs to agricultural producers, with unknown consequences. This paper provides the first large-scale empirical...
Persistent link: https://www.econbiz.de/10012510584
Electrification of transportation and buildings to reduce greenhouse gas (GHG) emissions requires massive switching from natural gas and refined petroleum products. All three end-use energy sources are mispriced due in part to the unpriced pollution they emit. Natural gas and electricity...
Persistent link: https://www.econbiz.de/10012616566