Showing 1 - 6 of 6
In this work we construct an optimal linear shrinkage estimator for the covariance matrix in high dimensions. The recent results from the random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The...
Persistent link: https://www.econbiz.de/10010941080
In this work we construct an optimal shrinkage estimator for the precision matrix in high dimensions. We consider the general asymptotics when the number of variables $p\rightarrow\infty$ and the sample size $n\rightarrow\infty$ so that $p/n\rightarrow c\in (0, +\infty)$. The precision matrix is...
Persistent link: https://www.econbiz.de/10010789930
We estimate the global minimum variance (GMV) portfolio in the high-dimensional case using results from random matrix theory. This approach leads to a shrinkage-type estimator which is distribution-free and it is optimal in the sense of minimizing the out-of-sample variance. Its asymptotic...
Persistent link: https://www.econbiz.de/10010779274
In this paper we derive the exact solution of the multi-period portfolio choice problem for an exponential utility function under return predictability. It is assumed that the asset returns depend on predictable variables and that the joint random process of the asset returns and the predictable...
Persistent link: https://www.econbiz.de/10010600092
In the paper, we consider three quadratic optimization problems which are frequently applied in portfolio theory, i.e, the Markowitz mean-variance problem as well as the problems based on the mean-variance utility function and the quadratic utility.Conditions are derived under which the...
Persistent link: https://www.econbiz.de/10010658665
In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different...
Persistent link: https://www.econbiz.de/10010960626