Showing 1 - 10 of 47
This paper analyzes the higher-order properties of nested pseudo-likelihood (NPL) estimators and their practical implementation for parametric discrete Markov decision models in which the probability distribution is defined as a fixed point. We propose a new NPL estimator that can achieve...
Persistent link: https://www.econbiz.de/10011940681
This paper extends the statistical inference approach developed in Beach (2016) to look at income changes over different regions of an income distribution. Specifically, it looks at relative-mean earnings (RME) ratios and mean earnings levels for lower earners, middle-class (MC) workers and...
Persistent link: https://www.econbiz.de/10011939444
Confidence intervals based on cluster-robust covariance matrices can be constructed in many ways. In addition to conventional intervals obtained by inverting Wald (t) tests, the paper studies intervals obtained by inverting LM tests, studentized bootstrap intervals based on the wild cluster...
Persistent link: https://www.econbiz.de/10011380809
Despite much recent work on the finite-sample properties of estimators and tests for linear regression models with a single endogenous regressor and weak instruments, little attention has been paid to tests for overidentifying restrictions in these circumstances. We study asymptotic tests for...
Persistent link: https://www.econbiz.de/10010368288
The cluster robust variance estimator (CRVE) relies on the number of clusters being large. The precise meaning of 'large' is ambiguous, but a shorthand 'rule of 42' has emerged in the literature. We show that this rule depends crucially on the assumption of equal-sized clusters. Monte Carlo...
Persistent link: https://www.econbiz.de/10010368290
Many empirical projects are well suited to incorporating a linear difference-in-differences research design. While estimation is straightforward, reliable inference can be a challenge. Past research has not only demonstrated that estimated standard errors are biased dramatically downwards in...
Persistent link: https://www.econbiz.de/10010368299
Inference based on cluster-robust standard errors is known to fail when the number of clusters is small, and the wild cluster bootstrap fails dramatically when the number of treated clusters is very small. We propose a family of new procedures called the sub- cluster wild bootstrap. In the case...
Persistent link: https://www.econbiz.de/10011583207
Inference using large datasets is not nearly as straightforward as conventional econometric theory suggests when the disturbances are clustered, even with very small intra-cluster correlations. The information contained in such a dataset grows much more slowly with the sample size than it would...
Persistent link: https://www.econbiz.de/10011583208
We study asymptotic inference based on cluster-robust variance estimators for regression models with clustered errors, focusing on the wild cluster bootstrap and the ordinary wild bootstrap. We state conditions under which both asymptotic and bootstrap tests and confidence intervals will be...
Persistent link: https://www.econbiz.de/10011939434
We study a cluster-robust variance estimator (CRVE) for regression models with clustering in two dimensions that was proposed in Cameron, Gelbach, and Miller (2011). We prove that this CRVE is consistent and yields valid inferences under precisely stated assumptions about moments and cluster...
Persistent link: https://www.econbiz.de/10011939437