Showing 1 - 9 of 9
Inference using difference-in-differences with clustered data requires care. Previous research has shown that t tests based on a cluster-robust variance estimator (CRVE) severely over-reject when there are few treated clusters, that different variants of the wild cluster bootstrap can...
Persistent link: https://www.econbiz.de/10011428007
Cluster-robust inference is widely used in modern empirical work in economics and many other disciplines. The key unit of observation is the cluster. We propose measures of "high-leverage" clusters and "influential" clusters for linear regression models. The measures of leverage and partial...
Persistent link: https://www.econbiz.de/10013169182
Efficient computational algorithms for bootstrapping linear regression models with clustered data are discussed. For OLS regression, a new algorithm is provided for the pairs cluster bootstrap, and two algorithms for the wild cluster bootstrap are compared. One of these is a new way to express...
Persistent link: https://www.econbiz.de/10012662210
We provide new and computationally attractive methods, based on jackknifing by cluster, to obtain cluster-robust variance matrix estimators (CRVEs) for linear regres- sion models estimated by least squares. These estimators have previously been com- putationally infeasible except for small...
Persistent link: https://www.econbiz.de/10013172440
Methods for cluster-robust inference are routinely used in economics and many other disciplines. However, it is only recently that theoretical foundations for the use of these methods in many empirically relevant situations have been developed. In this paper, we use these theoretical results to...
Persistent link: https://www.econbiz.de/10012494221
Inference using difference-in-differences with clustered data requires care. Previous research has shown that, when there are few treated clusters, t-tests based on cluster-robust variance estimators (CRVEs) severely overreject, and different variants of the wild cluster bootstrap can either...
Persistent link: https://www.econbiz.de/10011962945
Reliable inference with clustered data has received a great deal of attention in recent years. The overwhelming majority of this research assumes that the cluster structure is known. This assumption is very strong, because there are often several possible ways in which a dataset could be...
Persistent link: https://www.econbiz.de/10012201366
We study cluster-robust inference for binary response models. Inference based on the most commonly-used cluster-robust variance matrix estimator (CRVE) can be very unreliable. We study several alternatives. Conceptually the simplest of these, but also the most computationally demanding, involves...
Persistent link: https://www.econbiz.de/10015048740
For linear regression models with cross-section or panel data, it is natural to assume that the disturbances are clustered in two dimensions. However, the finite-sample properties of two-way cluster-robust tests and confidence intervals are often poor. We discuss several ways to improve...
Persistent link: https://www.econbiz.de/10015048741