Showing 1 - 10 of 12
A new model class for univariate asset returns is proposed which involves the use of mixtures of stable Paretian distributions, and readily lends itself to use in a multivariate context for portfolio selection. The model nests numerous ones currently in use, and is shown to outperform all its...
Persistent link: https://www.econbiz.de/10009313940
The class of mixed normal conditional heteroskedastic (MixN-GARCH) models, which couples a mixed normal distributional structure with GARCH-type dynamics, has been shown to offer a plausible decomposition of the contributions to volatility, as well as excellent out-of-sample forecasting...
Persistent link: https://www.econbiz.de/10009721353
It is well-known in empirical nance that virtually all asset returns, whether monthly, daily, or intraday, are heavy-tailed and, particularly for stock returns, are mildly but often signi cantly negatively skewed. However, the tail indices, or maximally existing moments of the returns, can di er...
Persistent link: https://www.econbiz.de/10003980003
The estimation of multivariate GARCH models remains a challenging task, even in modern computer environments. This manuscript shows how Independent Component Analysis can be used to estimate the Generalized Orthogonal GARCH model in a fraction of the time otherwise required. The proposed method...
Persistent link: https://www.econbiz.de/10003961455
The use of GARCH models is widely used as an effective method for capturing the volatility clustering inherent in financial returns series. The residuals from such models are however often non-Gaussian, and two methods suggest themselves for dealing with this; outlier removal, or use of...
Persistent link: https://www.econbiz.de/10009375155
A new multivariate time series model with various attractive properties is motivated and studied. By extending the CCC model in several ways, it allows for all the primary stylized facts of financial asset returns, including volatility clustering, non-normality (excess kurtosis and asymmetry),...
Persistent link: https://www.econbiz.de/10010256409
A fast method is developed for value at risk and expected shortfall prediction for univariate asset return time series exhibiting leptokurtosis, asymmetry, and conditional heteroskedasticity. It is based on a GARCH-type process driven by noncentral t innovations. While the method involves use of...
Persistent link: https://www.econbiz.de/10010412665
The paper proposes a framework for large-scale portfolio optimization which accounts for all the major stylized facts of multivariate financial returns, including volatility clustering, dynamics in the dependency structure, asymmetry, heavy tails, and nonellipticity. It introduces a so-called...
Persistent link: https://www.econbiz.de/10011410659
A multivariate normal mean-variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a...
Persistent link: https://www.econbiz.de/10012799624
In light of the growing use, acceptance of, and demand for, machine learning in many fields, notably data science, but also other fields such as finance -- and this in both industry and academics, some university departments might wish, or find themselves forced to, accord to the winds of change...
Persistent link: https://www.econbiz.de/10012643025