Showing 1 - 10 of 19
GARCH models are widely used in financial econometrics. However, we show by mean of a simple simulation example that the GARCH approach may lead to a serious model misspecification if the assumption of stationarity is violated. In particular, the well known integrated GARCH effect can be...
Persistent link: https://www.econbiz.de/10005854708
GARCH models are widely used in financial econometrics. However, we show by mean of a simple simulation example that the GARCH approach may lead to a serious model misspecification if the assumption of stationarity is violated. In particular, the well known integrated GARCH effect can be...
Persistent link: https://www.econbiz.de/10010265657
The paper develops a non-parametric, non-stationary framework for business-cycle dating based on an innovative statistical methodology known as Adaptive Weights Smoothing (AWS). The methodology is used both for the study of the individual macroeconomic time series relevant to the dating of the...
Persistent link: https://www.econbiz.de/10010276753
Here we develop methods for e±cient pricing multidimensional discrete-time American and Bermudan options by using regression based algorithms together with a new approach towards constructing upper bounds for the price of the option...
Persistent link: https://www.econbiz.de/10005854704
In the ideal Black-Scholes world, financial time series are assumed 1) stationary (time homogeneous) and 2) having conditionally normal distribution given the past. These two assumptions have been widely-used in many methods such as the RiskMetrics, one risk management method considered as...
Persistent link: https://www.econbiz.de/10010263671
This paper presents a new method for spatially adaptive local likelihood estimation which applies to a broad class of nonparametric models, including the Gaussian, Poisson and binary response models. The main idea of the method is given a sequence of local likelihood estimates (weak estimates),...
Persistent link: https://www.econbiz.de/10010263633
Finding non-Gaussian components of high-dimensional data is an important preprocessing step for efficient information processing. This article proposes a new linear method to identify the non-Gaussian subspace within a very general semi-parametric framework. Our proposed method, called NGCA...
Persistent link: https://www.econbiz.de/10010263636
In this paper we carry over the concept of reverse probabilistic representations developed in Milstein, Schoenmakers, Spokoiny (2004) for diffusion processes, to discrete time Markov chains. We outline the construction of reverse chains in several situations and apply this to processes which are...
Persistent link: https://www.econbiz.de/10010263637
Here we develop methods for efficient pricing multidimensional discrete time American and Bermudan options by using regression based algorithms together with a new approach towards constructing upper bounds for the price of the option. Applying the sample space with payoffs at the optimal...
Persistent link: https://www.econbiz.de/10010263645
Over recent years, study on risk management has been prompted by the Basel committee for regular banking supervisory. There are however limitations of some widely-used risk management methods that either calculate risk measures under the Gaussian distributional assumption or involve numerical...
Persistent link: https://www.econbiz.de/10010274123