Showing 1 - 10 of 180
This paper considers estimation and inference for varying-coefficient models with nonstationary regressors. We propose a nonparametric estimation method using penalized splines, which achieves the same optimal convergence rate as kernel-based methods, but enjoys computation advantages. Utilizing...
Persistent link: https://www.econbiz.de/10011277263
Financial risk control has always been challenging and becomes now an even harder problem as joint extreme events occur more frequently. For decision makers and government regulators, it is therefore important to obtain accurate information on the interdependency of risk factors. Given a...
Persistent link: https://www.econbiz.de/10009651900
Given n equidistant realisations of a Lévy process (Lt; t = 0), a natural estimator for the distribution function N of the Lévy measure is constructed. Under a polynomial decay restriction on the characteristic function, a Donsker-type theorem is proved, that is, a functional central limit...
Persistent link: https://www.econbiz.de/10009399339
We introduce the notion of realized copula. Based on assumptions of the marginal distri- butions of daily stock returns and a copula family, realized copula is dened as the copula structure materialized in realized covariance estimated from within-day high-frequency data. Copula parameters are...
Persistent link: https://www.econbiz.de/10010549032
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed on high frequencies, such as cumulated trading volumes or the time between potentially...
Persistent link: https://www.econbiz.de/10008727350
This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%)...
Persistent link: https://www.econbiz.de/10008629520
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in...
Persistent link: https://www.econbiz.de/10008461100
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10008477173
GARCH models are widely used in financial econometrics. However, we show by mean of a simple simulation example that the GARCH approach may lead to a serious model misspecification if the assumption of stationarity is violated. In particular, the well known integrated GARCH effect can be...
Persistent link: https://www.econbiz.de/10005677893
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10005677996