Showing 1 - 10 of 15
We present a comprehensive framework for Bayesian estimation of structural nonlinear dynamic economic models on sparse grids. The Smolyak operator underlying the sparse grids approach frees global approximation from the curse of dimensionality and we apply it to a Chebyshev approximation of the...
Persistent link: https://www.econbiz.de/10003636133
This paper is intended as a guide to building insurance risk (loss) models. A typical model for insurance risk, the so-called collective risk model, treats the aggregate loss as having a compound distribution with two main components: one characterizing the arrival of claims and another...
Persistent link: https://www.econbiz.de/10008663370
Exchange rates typically exhibit time-varying patterns in both means andvariances. The histograms of such series indicate heavy tails. In thispaper we construct models which enable a decision-maker to analyze theimplications of such time series patterns for currency risk management.Our approach...
Persistent link: https://www.econbiz.de/10010324426
The linear Gaussian state space model for which the common variance istreated as a stochastic time-varying variable is considered for themodelling of economic time series. The focus of this paper is on thesimultaneous estimation of parameters related to the stochasticprocesses of the mean part...
Persistent link: https://www.econbiz.de/10010324992
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that...
Persistent link: https://www.econbiz.de/10010325813
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10003634717
In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical...
Persistent link: https://www.econbiz.de/10003770817
In this paper we develop several regression algorithms for solving general stochastic optimal control problems via Monte Carlo. This type of algorithms is particularly useful for problems with a highdimensional state space and complex dependence structure of the underlying Markov process with...
Persistent link: https://www.econbiz.de/10003835132
As an asset is traded, its varying prices trace out an interesting time series. The price, at least in a general way, reflects some underlying value of the asset. For most basic assets, realistic models of value must involve many variables relating not only to the individual asset, but also to...
Persistent link: https://www.econbiz.de/10003973644
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10014221102