Showing 1 - 10 of 104
Generalized additive models (GAM) are multivariate nonparametric regressions for non-Gaussian responses including binary and count data. We propose a spline-backfitted kernel (SBK) estimator for the component functions. Our results are for weakly dependent data and we prove oracle efficiency....
Persistent link: https://www.econbiz.de/10008905999
We consider a difference based ridge regression estimator and a Liu type estimator of the regression parameters in the partial linear semiparametric regression model, y = Xβ + f + Both estimators are analysed and compared in the sense of mean-squared error. We consider the case of independent...
Persistent link: https://www.econbiz.de/10008906011
In this paper uniform confidence bands are constructed for nonparametric quantile estimates of regression functions. The method is based on the bootstrap, where resampling is done from a suitably estimated empirical density function (edf) for residuals. It is known that the approximation error...
Persistent link: https://www.econbiz.de/10003952788
This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%)...
Persistent link: https://www.econbiz.de/10003952845
This article studies nonparametric estimation of a regression model for d ≥ 2 potentially non-stationary regressors. It provides the first nonparametric procedure for a wide and important range of practical problems, for which there has been no applicable nonparametric estimation technique...
Persistent link: https://www.econbiz.de/10009379521
Financial risk control has always been challenging and becomes now an even harder problem as joint extreme events occur more frequently. For decision makers and government regulators, it is therefore important to obtain accurate information on the interdependency of risk factors. Given a...
Persistent link: https://www.econbiz.de/10009425497
This paper considers estimation and inference for varying-coefficient models with nonstationary regressors. We propose a nonparametric estimation method using penalized splines, which achieves the same optimal convergence rate as kernel-based methods, but enjoys computation advantages. Utilizing...
Persistent link: https://www.econbiz.de/10009767261
We focus on the construction of confidence corridors for multivariate nonparametric generalized quantile regression functions. This construction is based on asymptotic results for the maximal deviation between a suitable nonparametric estimator and the true function of interest which follow...
Persistent link: https://www.econbiz.de/10010354164
This paper employs numerical simulations of the Park and Sabourian (2011) herd model to derive new theory-based predictions for how information risk and market stress influence aggregate herding intensity. We test these predictions empirically using a comprehensive data set of highfrequency and...
Persistent link: https://www.econbiz.de/10010356865
We consider a varying coefficient regression model for sparse functional data, with time varying response variable depending linearly on some time independent covariates with coefficients as functions of time dependent covariates. Based on spline smoothing, we propose data driven simultaneous...
Persistent link: https://www.econbiz.de/10010225740