Showing 1 - 10 of 193
We propose a general class of Markov-switching-ARFIMA processes in order to combine strands of long memory and Markov-switching literature. Although the coverage of this class of models is broad, we show that these models can be easily estimated with the DLV algorithm proposed. This algorithm...
Persistent link: https://www.econbiz.de/10003633683
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10003635965
Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management.The recent availability of high-frequency data allows for refined methods in this field.In particular, more precise measures for the daily or lower frequency volatility can be...
Persistent link: https://www.econbiz.de/10003727640
Persistent link: https://www.econbiz.de/10003324453
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003893144
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in...
Persistent link: https://www.econbiz.de/10008663394
This paper studies the performance of nonparametric quantile regression as a tool to predict Value at Risk (VaR). The approach is flexible as it requires no assumptions on the form of return distributions. A monotonized double kernel local linear estimator is applied to estimate moderate (1%)...
Persistent link: https://www.econbiz.de/10003952845
This article studies nonparametric estimation of a regression model for d ≥ 2 potentially non-stationary regressors. It provides the first nonparametric procedure for a wide and important range of practical problems, for which there has been no applicable nonparametric estimation technique...
Persistent link: https://www.econbiz.de/10009379521
Financial risk control has always been challenging and becomes now an even harder problem as joint extreme events occur more frequently. For decision makers and government regulators, it is therefore important to obtain accurate information on the interdependency of risk factors. Given a...
Persistent link: https://www.econbiz.de/10009425497
This paper considers estimation and inference for varying-coefficient models with nonstationary regressors. We propose a nonparametric estimation method using penalized splines, which achieves the same optimal convergence rate as kernel-based methods, but enjoys computation advantages. Utilizing...
Persistent link: https://www.econbiz.de/10009767261