Showing 1 - 10 of 216
This paper addresses the problem of estimation of a nonparametric regression function from selectively observed data when selection is endogenous. Our approach relies on independence between covariates and selection conditionally on potential outcomes. Endogeneity of regressors is also allowed...
Persistent link: https://www.econbiz.de/10011389064
Confidence intervals and joint confidence sets are constructed for the nonparametric calibration of exponential Lévy models based on prices of European options. This is done by showing joint asymptotic normality for the estimation of the volatility, the drift, the intensity and the Lévy...
Persistent link: https://www.econbiz.de/10009487321
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10003635965
Let a high-dimensional random vector ⃗X can be represented as a sum of two components - a signal ⃗S , which belongs to some low-dimensional subspace S, and a noise component ⃗N . This paper presents a new approach for estimating the subspace S based on the ideas of the Non-Gaussian...
Persistent link: https://www.econbiz.de/10008663366
In this paper uniform confidence bands are constructed for nonparametric quantile estimates of regression functions. The method is based on the bootstrap, where resampling is done from a suitably estimated empirical density function (edf) for residuals. It is known that the approximation error...
Persistent link: https://www.econbiz.de/10003952788
Pricing kernels implicit in option prices play a key role in assessing the risk aversion over equity returns. We deal with nonparametric estimation of the pricing kernel (Empirical Pricing Kernel) given by the ratio of the risk-neutral density estimator and the subjective density estimator. The...
Persistent link: https://www.econbiz.de/10003952791
A Lévy process is observed at time points of distance delta until time T. We construct an estimator of the Lévy-Khinchine characteristics of the process and derive optimal rates of convergence simultaneously in T and delta. Thereby, we encompass the usual low- and high-frequency assumptions...
Persistent link: https://www.econbiz.de/10003952994
There is increasing demand for models of time-varying and non-Gaussian dependencies for mul- tivariate time-series. Available models suffer from the curse of dimensionality or restrictive assumptions on the parameters and the distribution. A promising class of models are the hierarchical...
Persistent link: https://www.econbiz.de/10003953027
In semiparametric models it is a common approach to under-smooth the nonparametric functions in order that estimators of the finite dimensional parameters can achieve root-n consistency. The requirement of under-smoothing may result as we show from inefficient estimation methods or technical...
Persistent link: https://www.econbiz.de/10003835181
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10003893144