Showing 1 - 10 of 138
This paper considers maximum likelihood estimation and inference in the two-way random effects model with serial correlation. We derive a straightforward maximum likelihood estimator when the time-specific component follow an AR(1) or MA(1) process. The estimator is easily generalized to...
Persistent link: https://www.econbiz.de/10005423854
In this paper we propose a general method for testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form. These tests are based on a Taylor expansion of the nonlinear model around a given point in a sample space. We study the performance of our tests by...
Persistent link: https://www.econbiz.de/10010281171
In this paper we introduce the Smooth Permanent Surge [SPS] model. The model is an integrated non lineal moving average process with possibly unit roots in the moving average coefficients. The process nests the Stochastic Permanent Break [STOPBREAK] process by Engle and Smith (1999) and in a...
Persistent link: https://www.econbiz.de/10010281224
In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the conditional variance to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterizations describe both nonlinearity and structural change in the...
Persistent link: https://www.econbiz.de/10010281252
In this paper we propose a sequential method for determining the number of breaks in piecewise linear structural break models. An advantage of the method is that it is based on standard statistical inference. Tests available for testing linearity against switching regression type nonlinearity...
Persistent link: https://www.econbiz.de/10010281406
The detection of structural change and determination of lag lengths are long-standing issues in time series analysis. This paper demonstrates how these can be successfully married in a Bayesian analysis. By taking account of the inherent uncertainty about the lag length when deciding on the...
Persistent link: https://www.econbiz.de/10010281431
In this paper we propose a method for determining the number of regimes in threshold autoregressive models using smooth transition autoregression as a tool. As the smooth transition model is just an approximation to the threshold autoregressive one, no asymptotic properties are claimed for the...
Persistent link: https://www.econbiz.de/10010281439
In this paper we propose a general method for testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form. These tests are based on a Taylor expansion of the nonlinear model around a given point in a sample space. We study the performance of our tests by...
Persistent link: https://www.econbiz.de/10005207185
In this paper, new noncausality tests relying on a general nonlinear framework are proposed and their performance studied by a Monte Carlo experiment and a variety of nonlinear artificial series. Two of the tests are based on a Taylor expansion of the nonlinear model around a given point in the...
Persistent link: https://www.econbiz.de/10005207201
The detection of structural change and determination of lag lengths are long-standing issues in time series analysis. This paper demonstrates how these can be successfully married in a Bayesian analysis. By taking account of the inherent uncertainty about the lag length when deciding on the...
Persistent link: https://www.econbiz.de/10005423801