Showing 1 - 10 of 30
The identification of asymmetric conditional heteroscedasticity is often based on samplecross-correlations between past and squared observations. In this paper we analyse theeffects of outliers on these cross-correlations and, consequently, on the identification ofasymmetric volatilities. We...
Persistent link: https://www.econbiz.de/10010861883
This paper proposes a new stochastic volatility model to represent the dynamic evolution of conditionally heteroscedastic time series with leverage effect. Although there are already several models proposed in the literature with the same purpose, our main justification for a further new model...
Persistent link: https://www.econbiz.de/10010861885
In this paper we propose a new class of asymmetric stochastic volatility (SV) models, which specifies the volatility as a function of the score of the distribution of returns conditional on volatilities based on the Generalized Autoregressive Score (GAS) model. Different specifications of the...
Persistent link: https://www.econbiz.de/10010940765
Prediction intervals in State Space models can be obtained by assuming Gaussian innovations and using the prediction equations of the Kalman filter, where the true parameters are substituted by consistent estimates. This approach has two limitations. First, it does not incorporate the...
Persistent link: https://www.econbiz.de/10005249596
In this paper, we propose a new stochastic volatility model, called A-LMSV, to cope simultaneously with the leverage effect and long-memory. We derive its statistical properties and compare them with the properties of the FIEGARCH model. We show that the dependence of the autocorrelations of...
Persistent link: https://www.econbiz.de/10005249606
This paper compares the ability of GARCH and ARSV models to represent adequately the main empirical properties usually observed in high frequency financial time series: high kurtosis, small first order autocorrelation of squared observations and slow decay towards zero of the autocorrelation...
Persistent link: https://www.econbiz.de/10005249611
Hwang (2001) proposes the FIFGARCH model to represent long memory asymmetric conditional variance. Although he claims that this model nests many previous models, we show that it does not and that the model is badly specified. We propose and alternative specification.
Persistent link: https://www.econbiz.de/10005249615
In this paper, unobserved component models with GARCH disturbances are extended to allow for asymmetric responses of conditional variances to positive and negative shocks. The asymmetric conditional variance is represented by a member of the QARCH class of models. The proposed model allows to...
Persistent link: https://www.econbiz.de/10005249626
In this paper we propose a bootstrap resampling scheme to construct prediction intervals for future values of a variable after a linear ARIMA model has been fitted to a power transformation of it. The advantages over existing methods for computing prediction intervals of power transformed time...
Persistent link: https://www.econbiz.de/10005249632
In this paper we consider a model with stochastic trend, seasonal and transitory components with the disturbances of the trend and transitory disturbances specified as QGARCH models. We propose to use the differences between the autocorrelations of squares and the squared autocorrelations of the...
Persistent link: https://www.econbiz.de/10005249638