Showing 1 - 5 of 5
In this paper sequential monitoring schemes to detect nonparametric drifts are studied for the random walk case. The procedure is based on a kernel smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson estimator and its associated sequential partial sum process under...
Persistent link: https://www.econbiz.de/10010296634
An attractive nonparametric method to detect change-points sequentially is to apply control charts based on kernel smoothers. Recently, the strong convergence of the associated normed delay associated with such a sequential stopping rule has been studied under sequences of out-of-control models....
Persistent link: https://www.econbiz.de/10010306249
Motivated by applications in statistical quality control and signal analysis, we propose a sequential detection procedure which is designed to detect structural changes, in particular jumps, immediately. This is achieved by modifying a median filter by appropriate kernel-based jump preserving...
Persistent link: https://www.econbiz.de/10010306263
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind...
Persistent link: https://www.econbiz.de/10010316534
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10010316616