Showing 1 - 10 of 24
In modern statistics, the robust estimation of parameters of a regression hyperplane is a central problem. Robustness means that the estimation is not or only slightly affected by outliers in the data. In this paper, it is shown that the following robust estimators are hard to compute: LMS, LQS,...
Persistent link: https://www.econbiz.de/10010296716
The purpose of this paper is to propose a procedure for testing the equality of several regression curves fi in nonparametric regression models when the noise is inhomogeneous. This extends work of Dette and Neumeyer (2001) and it is shown that the new test is asymptotically uniformly more...
Persistent link: https://www.econbiz.de/10010296611
In this paper we investigate several tests for the hypothesis of a parametric form of the error distribution in the common linear and nonparametric regression model, which are based on empirical processes of residuals. It is well known that tests in this context are not asymptotically...
Persistent link: https://www.econbiz.de/10010296621
A monotone estimate of the conditional variance function in a heteroscedastic, nonpara- metric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an esti- mate of the inverse variance...
Persistent link: https://www.econbiz.de/10010296626
In this note we consider several goodness-of-fit tests for model specification in non- parametric regression models which are based on kernel methods. In order to circumvent the problem of choosing a bandwidth for the corresponding test statistic we propose to consider the statistics as...
Persistent link: https://www.econbiz.de/10010296632
A new nonparametric estimate of a convex regression function is proposed and its stochastic properties are studied. The method starts with an unconstrained estimate of the derivative of the regression function, which is firstly isotonized and then integrated. We prove asymptotic normality of the...
Persistent link: https://www.econbiz.de/10010296683
The aim of this paper is to show that existing estimators for the error distribution in nonparametric regression models can be improved when additional information about the distribution is included by the empirical likelihood method. The weak convergence of the resulting new estimator to a...
Persistent link: https://www.econbiz.de/10010296709
In this paper a new test for the parametric form of the variance function in the common nonparametric regression model is proposed which is applicable under very weak assumptions. The new test is based on an empirical process formed from pseudo residuals, for which weak convergence to a Gaussian...
Persistent link: https://www.econbiz.de/10010296717
In this paper a new test for the parametric form of the variance function in the common nonparametric regression model is proposed which is applicable under very weak smoothness assumptions. The new test is based on an empirical process formed from pseudo residuals, for which weak convergence to...
Persistent link: https://www.econbiz.de/10010296720
A new test for strict monotonicity of the regression function is proposed which is based on a composition of an estimate of the inverse of the regression function with a common regression estimate. This composition is equal to the identity if and only if the ?true? regression function is...
Persistent link: https://www.econbiz.de/10010296764