Showing 1 - 9 of 9
In nonparametric curve estimation, the smoothing parameter is critical for performance. In order to estimate the hazard rate, we compare nearest neighbor selectors that minimize the quadratic, the Kullback-Leibler, and the uniform loss. These measures result in a rule of thumb, a...
Persistent link: https://www.econbiz.de/10010300666
In this paper we present a detailed numerical comparison of three monotone nonparametric kernel regression estimates, which isotonize a nonparametric curve estimator. The first estimate is the classical smoothed isotone estimate of Brunk (1958). The second method has recently been proposed by...
Persistent link: https://www.econbiz.de/10010296624
To estimate the effective dose level ED a in the common binary response model, several parametric and nonparametric estimators have been proposed in the literature. In the present paper, we focus on nonparametric methods and present a detailed numerical comparison of four different approaches to...
Persistent link: https://www.econbiz.de/10010300668
For the common binary response model we propose a direct method for the nonparametric estimation of the effective dose level ED? (0 ? 1). The estimator is obtained by the composition of a nonparametric estimate of the quantile response curve and a classical density estimate. The new method...
Persistent link: https://www.econbiz.de/10010306272
In this paper a new method for monotone estimation of a regression function is proposed. The estimator is obtained by the combination of a density and a regression estimate and is appealing to users of conventional smoothing methods as kernel estimators, local polynomials, series estimators or...
Persistent link: https://www.econbiz.de/10010306273
In this paper, control variates are proposed to speed up Monte Carlo Simulations to estimate expected error rates in multivariate classification.
Persistent link: https://www.econbiz.de/10010316538
We consider the problem of uniform asymptotics in kernel functional estimation where the bandwidth can depend on the data. In a unified approach we investigate kernel estimates of the density and the hazard rate for uncensored and right-censored observations. The model allows for the fixed...
Persistent link: https://www.econbiz.de/10010296605
Almost sure convergence for ratios of delta functions establishes global and local strong consistency for a variety of estimates and data generations. For instance, the empirical probability function from independent identically distributed random vectors, the empirical distribution for...
Persistent link: https://www.econbiz.de/10010300694
In this paper it is shown that the number of latent factors in a multiple multivariate regression model need not be larger than the number of the response variables in order to achieve an optimal prediction. The practical importance of this lemma is outlined and an application of such a...
Persistent link: https://www.econbiz.de/10010296612