Showing 1 - 3 of 3
Prediction in time series models with a trend requires reliable estimation of the trend function at the right end of the observed series. Local polynomial smoothing is a suitable tool because boundary corrections are included implicitly. However, outliers may lead to unreliable estimates, if...
Persistent link: https://www.econbiz.de/10010316616
Recent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum...
Persistent link: https://www.econbiz.de/10010316696
We investigate the behavior of nonparametric kernel M-estimators in the presence of long-memory errors. The optimal bandwidth and a central limit theorem are obtained. It turns out that in the Gaussian case all kernel M-estimators have the same limiting normal distribution. The motivation behind...
Persistent link: https://www.econbiz.de/10010316534