Showing 1 - 5 of 5
We show that the asymptotic distribution of the ordinary least squares estimator in a cointegration regression may be bimodal. A simple case arises when the intercept is erroneously omitted from the estimated model or in nonlinear-in-variables models with endogenous regressors. In the latter...
Persistent link: https://www.econbiz.de/10008684769
In this paper a new model of mixture of distributions is proposed, where the mixing structure is determined by a smooth transition tree architecture. Models based on mixture of distributions are useful in order to approximate unknown conditional distributions of multivariate data. The tree...
Persistent link: https://www.econbiz.de/10005222459
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume that both the number of covariates in the model and the number of candidate variables can increase with the sample size (polynomially orgeometrically). In other...
Persistent link: https://www.econbiz.de/10011252422
In this paper we show the validity of the adaptive LASSO procedure in estimating stationary ARDL(p,q) models with GARCH innovations. We show that, given a set of initial weights, the adaptive Lasso selects the relevant variables with probability converging to one. Afterwards, we show that the...
Persistent link: https://www.econbiz.de/10011252686
We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse,high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is, possibly,...
Persistent link: https://www.econbiz.de/10010568141