Showing 1 - 4 of 4
This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit...
Persistent link: https://www.econbiz.de/10011599432
We characterize a class of dynamic stochastic games that we call separable dynamic games with noisy transitions and establish that these widely used models are protocol invariant provided that periods are sufficiently short. Protocol invariance means that the set of Markov perfect equilibria is...
Persistent link: https://www.econbiz.de/10012215326
We characterize a class of dynamic stochastic games that we call separable dynamic games with noisy transitions and establish that these widely used models are protocol invariant provided that periods are sufficiently short. Protocol invariance means that the set of Markov perfect equilibria is...
Persistent link: https://www.econbiz.de/10012637399
This paper studies generic properties of Markov perfect equilibria in dynamic stochastic games. We show that almost all dynamic stochastic games have a finite number of locally isolated Markov perfect equilibria. These equilibria are essential and strongly stable. Moreover, they all admit...
Persistent link: https://www.econbiz.de/10008562484