Showing 1 - 10 of 10
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10014220784
The basic structural time series model has been designed for the modelling and forecasting of seasonal economic time series. In this paper we explore a generalisation of the basic structural time series model in which the time-varying trigonometric terms associated with different seasonal...
Persistent link: https://www.econbiz.de/10014198312
We show that efficient importance sampling for nonlinear non-Gaussian state space models can be implemented by computationally efficient Kalman filter and smoothing methods. The result provides some new insights but it primarily leads to a simple and fast method for efficient importance...
Persistent link: https://www.econbiz.de/10013066727
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10012722680
In this paper we introduce time-varying parameters in the dynamic Nelson-Siegel yield curve model for the simultaneous analysis and forecasting of interest rates of different maturities, known as the term structure. The Nelson-Siegel model has been recently reformulated as a dynamic factor model...
Persistent link: https://www.econbiz.de/10012714319
We consider the problem of smoothing data on two-dimensional grids with holes or gaps. Such grids are often referred to as difficult regions. Since the data is not observed on these locations, the gap is not part of the domain. We cannot apply standard smoothing methods since they smooth over...
Persistent link: https://www.econbiz.de/10012720127
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10014221102
We introduce a dynamic network model with probabilistic link functions that depend on stochastically time-varying parameters. We adopt the widely used blockmodel framework and allow the high-dimensional vector of link probabilities to be a function of a low-dimensional set of dynamic factors....
Persistent link: https://www.econbiz.de/10014124085
Attack and defense strengths of football teams vary over time due to changes in the teams of players or their managers. We develop a statistical model for the analysis and forecasting of football match results which are assumed to come from a bivariate Poisson distribution with intensity...
Persistent link: https://www.econbiz.de/10014165162
We show that efficient importance sampling for nonlinear non-Gaussian state space models can be implemented by computationally efficient Kalman filter and smoothing methods. The result provides some new insights but it primarily leads to a simple and fast method for efficient importance...
Persistent link: https://www.econbiz.de/10013111540