Showing 1 - 10 of 48
This paper presents the R-package <B>MitISEM</B> (mixture of <I>t</I> by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture...</i></b>
Persistent link: https://www.econbiz.de/10011288392
We propose a new methodology for the Bayesian analysis of nonlinear non-Gaussian state space models with a Gaussian time-varying signal, where the signal is a function of a possibly high-dimensional state vector. The novelty of our approach is the development of proposal densities for the joint...
Persistent link: https://www.econbiz.de/10010326393
This paper presents the R package MitISEM, which provides an automatic and flexible method to approximate a non-elliptical target density using adaptive mixtures of Student-t densities, where only a kernel of the target density is required. The approximation can be used as a candidate density in...
Persistent link: https://www.econbiz.de/10010326521
This paper presents the parallel computing implementation of the MitISEM algorithm, labeled Parallel MitISEM. The basic MitISEM algorithm, introduced by Hoogerheide, Opschoor and Van Dijk (2012), provides an automatic and flexible method to approximate a non-elliptical target density using...
Persistent link: https://www.econbiz.de/10011451514
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010491347
This article details a Bayesian analysis of the Nile river flow data, using a simple state space model. This allows the article to concentrate on implementation issues surrounding this model. For this data set, Metropolis-Hastings and Gibbs sampling algorithms are implemented in the programming...
Persistent link: https://www.econbiz.de/10013128945
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10013114226
performances of the predictive densities. For illustrative purposes we apply it to combine White Noise and GARCH models to forecast …
Persistent link: https://www.econbiz.de/10013114729
This paper examines which macroeconomic and financial variables are most informative for the federal funds target rate decisions made by the Federal Open Market Committee (FOMC) from a forecasting perspective. The analysis is conducted for the FOMC decision during the period January 1990 - June...
Persistent link: https://www.econbiz.de/10013122460
This paper proposes a functional specification approach for dynamic stochastic general equilibrium (DSGE) models that explores the properties of the solution method used to approximate policy functions. In particular, the solution-driven specification takes the properties of the solution method...
Persistent link: https://www.econbiz.de/10013082985