Showing 1 - 10 of 186
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10010325429
The linear Gaussian state space model for which the common variance istreated as a stochastic time-varying variable is considered for themodelling of economic time series. The focus of this paper is on thesimultaneous estimation of parameters related to the stochasticprocesses of the mean part...
Persistent link: https://www.econbiz.de/10010324992
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10010325333
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10014221102
In the last few decades, the study of ordinal data in which the variable of interest is not exactly observed but only known to be in a specific ordinal category has become important. In Psychometrics such variables are analysed under the heading of item response models (IRM). In Econometrics,...
Persistent link: https://www.econbiz.de/10015209991
A flexible predictive density combination model is introduced for large financial data sets which allows for dynamic weight learning and model set incompleteness. Dimension reduction procedures allocate the large sets of predictive densities and combination weights to relatively small sets....
Persistent link: https://www.econbiz.de/10013356469
A flexible predictive density combination is introduced for large financial data sets which allows for model set incompleteness. Dimension reduction procedures that include learning allocate the large sets of predictive densities and combination weights to relatively small subsets. Given the...
Persistent link: https://www.econbiz.de/10013356509
We propose a flexible framework that allows for the relationship between housing prices and their determinants to vary over time. Our model incorporates housing-specific characteristics and macroeconomic variables, while accounting for a gradual global trend that reflects the unobserved external...
Persistent link: https://www.econbiz.de/10014321812
Adaptive Polar Sampling (APS) is proposed as a Markov chain Monte Carlomethod for Bayesian analysis of models with ill-behaved posteriordistributions. In order to sample efficiently from such a distribution,a location-scale transformation and a transformation to polarcoordinates are used. After...
Persistent link: https://www.econbiz.de/10010324702
A test for serial independence is proposed which is related to the BDS test but focuses on tail event probabilities rather than probabilities near the center of the distribution. The motivation behind this approach is to obtain a test more suitable for detecting structure in the tails, such as...
Persistent link: https://www.econbiz.de/10010324850