Showing 1 - 10 of 300
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series....
Persistent link: https://www.econbiz.de/10010325722
This paper conducts an empirical analysis of the heterogeneity of recessions inmonthly U.S. coincident and leading indicator variables. Univariate Markovswitchingmodels indicate that it is appropriate to allow for two distinct recessionregimes, corresponding with ‘mild’ and ‘severe’...
Persistent link: https://www.econbiz.de/10010326552
This paper examines whether the Conference Board's Leading Economic Index (LEI) can be used for modeling and forecasting a more refined business cycle classification beyond the usual distinction between expansions and contractions. Univariate Markov-switching models for monthly coincident...
Persistent link: https://www.econbiz.de/10014176004
The empirical support for features of a Dynamic Stochastic General Equilibrium model with two technology shocks is valuated using Bayesian model averaging over vector autoregressions. The model features include equilibria, restrictions on long-run responses, a structural break of unknown date...
Persistent link: https://www.econbiz.de/10013108781
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10010325199
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10010325655
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of...
Persistent link: https://www.econbiz.de/10010325702
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10010325904
This note presents the R package bayesGARCH (Ardia, 2007) which provides functions for the Bayesian estimation of the parsimonious and effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the tedious task of tuning a MCMC sampling...
Persistent link: https://www.econbiz.de/10010325986
Accurate prediction of risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) requires precise estimation of the tail of the predictive distribution. Two novel concepts are introduced that offer a specific focus on this part of the predictive density: the censored posterior, a...
Persistent link: https://www.econbiz.de/10010326148