Showing 1 - 10 of 185
We develop a new simultaneous time series model for volatility and dependence with long memory (fractionally integrated) dynamics and heavy-tailed densities. Our new multivariate model accounts for typical empirical features in financial time series while being robust to outliers or jumps in the...
Persistent link: https://www.econbiz.de/10009386532
Accepted by the <Journal of Empirical Finance</I>.<P> We develop a new simultaneous time series model for volatility and dependence with long memory (fractionally integrated) dynamics and heavy-tailed densities. Our new multivariate model accounts for typical empirical features in financial time series while being robust to...</p></journal>
Persistent link: https://www.econbiz.de/10011256962
This paper develops a novel approach to modeling and forecasting realized volatility (RV) measures based on copula functions. Copula-based time series models can capture relevant characteristics of volatility such as nonlinear dynamics and long-memory type behavior in a flexible yet parsimonious...
Persistent link: https://www.econbiz.de/10009293998
The sum of squared intraday returns provides an unbiased and almost error-free measure of ex-post volatility. In this paper we develop a nonlinear Autoregressive Fractionally Integrated Moving Average (ARFIMA) model for realized volatility, which accommodates level shifts, day-of-the-week...
Persistent link: https://www.econbiz.de/10005137234
This discussion paper resulted in a publication in the 'International Journal of Forecasting', 2009, 27, 282-303.<P> The sum of squared intraday returns provides an unbiased and almost error-free measure of ex-post volatility. In this paper we develop a nonlinear Autoregressive Fractionally...</p>
Persistent link: https://www.econbiz.de/10011257135
This paper develops a novel approach to modeling and forecasting realized volatility (RV) measures based on copula functions. Copula-based time series models can capture relevant characteristics of volatility such as nonlinear dynamics and long-memory type behavior in a flexible yet parsimonious...
Persistent link: https://www.econbiz.de/10011257654
<p>A key application of long memory time series models concerns inflation. Long memory implies that shocks have a long-lasting effect. It may however be that empirical evidence for long memory is caused by neglecting one or more level shifts. Since such level shifts are not unlikely for inflation,...</p>
Persistent link: https://www.econbiz.de/10005209483
A key application of long memory time series models concerns inflation. Long memory implies that shocks have a long-lasting effect. It may however be that empirical evidence for long memory is caused by neglecting one or more level shifts. Since such level shifts are not unlikely for inflation,...
Persistent link: https://www.econbiz.de/10011257369
The strong consistency and asymptotic normality of the maximum likelihood estimator in observation-driven models usually requires the study of the model both as a filter for the time-varying parameter and as a data generating process (DGP) for observed data. The probabilistic properties of the...
Persistent link: https://www.econbiz.de/10011272581
Of the two most widely estimated univariate asymmetric conditional volatility models, the exponential GARCH (or EGARCH) specification can capture asymmetry, which refers to the different effects on conditional volatility of positive and negative effects of equal magnitude, and leverage, which...
Persistent link: https://www.econbiz.de/10011272590