Showing 1 - 10 of 318
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10011256750
A Direct Monte Carlo (DMC) approach is introduced for posterior simulation in theInstrumental Variables (IV) model with one possibly endogenous regressor, multipleinstruments and Gaussian errors under a flat prior. This DMC method can also beapplied in an IV model (with one or multiple...
Persistent link: https://www.econbiz.de/10011257271
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10005504906
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10011256846
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series....
Persistent link: https://www.econbiz.de/10011256933
This note presents the R package bayesGARCH (Ardia, 2007) which provides functions for the Bayesian estimation of the parsimonious and effective GARCH(1,1) model with Student-<I>t</I> innovations. The estimation procedure is fully automatic and thus avoids the tedious task of tuning a MCMC sampling...</i>
Persistent link: https://www.econbiz.de/10011256998
This discussion paper was published in the <I>Journal of Econometrics</I> (2012). Vol. 171(2), 101-120.<p> A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that...</p></i>
Persistent link: https://www.econbiz.de/10011257036
Time varying patterns in US growth are analyzed using various univariate model structures, starting from a naive model structure where all features change every period to a model where the slow variation in the conditional mean and changes in the conditional variance are specified together with...
Persistent link: https://www.econbiz.de/10011257064
We propose a new approach to deal with structural breaks in time series models. The key contribution is an alternative dynamic stochastic specification for the model parameters which describes potential breaks. After a break new parameter values are generated from a so-called baseline prior...
Persistent link: https://www.econbiz.de/10011257521
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series....
Persistent link: https://www.econbiz.de/10004964452